Phase stability in the Fe–Ni system: Investigation by first-principles calculations and atomistic simulations

نویسنده

  • Y. Mishin
چکیده

First-principles calculations of the energy of various crystal structures of Fe, Ni and ordered Fe–Ni compounds with different stoichiometries have been performed by the linearized augmented plane wave (LAPW) method in the generalized gradient approximation. The most stable compounds are L12–Ni3Fe, L10–FeNi, C11f–Ni2Fe and C11f–Fe2Ni. The L12–Ni3Fe compound has the largest negative formation energy, which is consistent with the experimental Fe–Ni phase diagram. The L10–FeNi compound has also been observed experimentally in meteorite samples as a metastable phase. It is suggested here that the C11f compounds could also form in Fe–Ni alloys at low temperatures. A new semi-empirical interatomic potential has been developed for the Fe–Ni system by fitting to experimental data and the results of the LAPW calculations. Recognizing the significance of the covalent component of bonding in this system, the potential is based on the embedded-atom method (EAM) but additionally includes a bond-angle dependence. In comparison with the existing modified EAM method, our potential form is simpler, extends interactions to several (3–5) coordination shells and replaces the screening procedure by a smooth cutoff of the potential functions. The potential reproduces a variety of properties of Fe and Ni with a reasonable accuracy. It also reproduces all stability trends across the Fe–Ni system established by the LAPW calculations. The potential can be useful in atomistic simulations of the phases of the Fe–Ni system. 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy

Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-...

متن کامل

First-Principles Investigation of L10-Disorder Phase Equilibrium in Fe–Pt System

First-principles study is attempted to investigate L10-disorder phase equilibrium in Fe–Pt system. The present study consists of electronic structure total energy calculations by FLAPW for the ground state and statistical mechanics calculations by Cluster Variation Method for finite temperatures. It is revealed that the magnetism plays a crucial role in the phase stability. The spin polarized F...

متن کامل

Simulation of the interaction between Fe impurities and point defects in V

We report improved results of atomistic modeling of V-Fe alloys. We introduced an electronic structure embedding approach to improve the description of the point defects in first-principles calculations, by including the semicore electrons in some V atoms those near the interstitial where the semicore levels are broadened but not those further from the point defect. This enables us to combine g...

متن کامل

First-principles models for phase stability and radiation defects in structural materials for future fusion

Generic materials-related problems foreseen in connection with the operation of a fusion power plant present a major challenge for the development of magnetically confined fusion as a commercial power generation option. In this review, we focus on the predictive capabilities of first-principles-based atomistic models for radiation defects and phase stability of bodycentred cubic Fe-Cr-based fer...

متن کامل

Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses

For a ternary alloy system promising for obtaining the so-called bulk metallic glasses (BMGs), the first priority issue is to predict the favored compositions, which could then serve as guidance for the appropriate alloy design. Taking the Al-Ni-Y system as an example, here we show an atomistic approach, which is developed based on a recently constructed and proven realistic interatomic potenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005